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We focus on genomics → study rare functional variants [rare diseases, precision medicine]
We provide:

1. Fast, accurate prediction of # new genomic variants to be seen in future samples
2. Optimal experimental design: how to design follow-up studies in genomics to learn the most

Experiments: prediction and optimal design

Predicting and maximizing the number of new genomic 
variants in future experiments

Modern ML tackles increasingly complex real-world problems
 Often need extremely large amount of data 
 Data-gathering can be expensive, requires careful planning

Need quantitative framework to know
1. How much can we expect to learn from new data
2. How to collect data to learn the most possible
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- BNP models grow in complexity as more data is collected 
- We use the Indian buffet process [IBP]: prior for binary matrices

We fit this 
curve: learn
hyperparameters
of the IBP
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Use posterior mean 𝑃ே
(ெ) as pointwise predictor via empirical Bayes:
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- 𝛼 > 0: mass parameter: scales total # variants observed
- 𝜎 ∈ [0,1): discount parameter: controls power law behavior
- 𝑐 ≻ 𝜎: concentration parameter: modulates frequencies of widespread counts
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- Sanity check: test predictor 𝑃ே
(ெ)on synthetic and real data

- Performs comparably to best alternative when experimental 
conditions don't change between pilot and follow-up studies

- # new variants depends on samples’ quality
- when experimental conditions change:

- competing methods fail to capture change in 
samples’ quality between pilot and follow up

- BNP approach can successfully adapt and produce 
useful predictions
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Under a fixed budget, solve quality/quantity tradeoff:
- Quality: sequencing depth 𝜆
- Quantity: # new samples 𝑀
Solve constrained optimization using BNP predictor
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under a fixed budget

- Goal: design future experiments to find rare functional variants
- Problem: hard, and costly: present in few individuals, need a lot 

of data; data-gathering is expensive 
- Available methods: predict # new variants as we get more data, but…

-  Can be inaccurate (Ionita-Laza et al. [2009], Zou et al. [2016]) 
-  No guidance on optimal sampling under a fixed budget (Gravel [2014])
-  Can’t accommodate changes in experimental conditions

- Our method: BNP approach for optimal experimental design
-  Fast, accurate predictions for # new variants
-  Useful guidance on design of future experiments
-  Able to accommodate changes  in experimental setup: useful for 

reliable optimal experimental design

Given a pilot study, design follow-up to maximize amount 
of new information (# new variants) under a fixed budget:


