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• Modern genomics for personalized medicine: study rare functional variants.
• To unlock full potential of genomics based approach, need effective catalogue of rare variants
• Quantitative framework/prediction problem: how much can we expect to learn from new data?
• Provide fast, improved prediction and uncertainty for # new genomic variants to be seen in future samples
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• Goal: form exhaustive catalogue to “map” rare variants
• Problem: present in few individuals, need a lot of data; 
• Need predictive methods to guide future experiments
• BNP methods based on posterior predictive distribution of 

completely random measures [CRMs] are simple, fast, but:
• Weak sample dependence: # future new variants depends 

explicitly on data only via # datapoints N
• Misspecification: # future new variants must follow Poisson

distribution; real data often over dispersed
• Our contribution: Revisit alternative class of “scaled” 

random measures [James, Orbanz, Teh 2015]; 
• Scaled stable process: simple, closed form predictive distr. 
• Overcomes CRM framework limitations, better predictions
• additional sample dependence (# distinct variants 𝑲𝑵)
• flexible predictive distribution (negative binomial)

Data sketch & problem description
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• Variants probabilities 
mutually independent

• # new variants  depends 
explicitly on observations 
only via sample size N

Proposition [informal]: For any CRM prior paired with a 
Bernoulli likelihood process, # new features in M new 

samples given N datapoints follows Poisson(𝑓 𝜈, 𝑁,𝑀 )
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New: Scaled Random Measures
• Scale CRM by largest jump 𝜟𝟏
• Resulting measure not a CRM: 

dependence across rates
• Posterior predictive can have 

richer sample dependence, 
but not necessarily nice form

Proposition [informal]: For 𝜇~SSP paired with Bernoulli 
likelihood process, # new features in M new samples 
given N datapoints follows 𝐍𝐞𝐠𝐁𝐢𝐧(𝑓 𝜈, 𝑁,𝑲𝑵, 𝑀 )

Special case: we focus on Scaled Stable process (SSP):
• Simple, closed form posterior predictive
• Overcomes CRM limitations

Old: Completely Random Measures

𝜽𝒌

BNP models for genetic variants Experimental results

Scaled 
StableBern

3ParamBetaBern
Masoero & al 2021

LinProg
Zou & al 2016 

4th Jackknife
Gravel 2014

Good-Toulmin
Chakraborty 2019 

Prediction: # new variants will be observed in cancer samples:
• Retain 𝑁 observations for training
• Extrapolate up to 𝑀 such that 𝑁 ≪ 𝑀
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Accuracy

• Future directions:
• Are there priors which 

exploit the full frequency 
spectrum and have 
tractable posterior 
predictive distributions?

• Coverage and accurate 
calibration of BNP models: 
can we obtain fully 
calibrated posterior 
predictives?
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# samples

𝑁 = 10 (training)


